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Abstract

A problem for the thermoelastic half-plane indented by a rigid punch of various shapes is solved explicitly in this
paper by the method of analytical continuation. The e�ects of applied loadings, the pro®le of the punch and
material properties on the contact stress under the punch face are studied in detail and shown in graphic form. A

rigid punch of three di�erent pro®les with or without friction is considered under the complete or incomplete
indentation condition. 7 2000 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Indentation of a punch into the surface of an elastic half-plane has been studied for many years

because it is a fundamental model for explaining forming and contact damage processes. This is one of

the mixed boundary value problems where both the stress and the displacement are prescribed on the

half-plane surface. One of the most powerful methods for solving plane punch problems is based on

complex variable theory with the aid of the technique of analytical continuation. Following the method

of analytical continuation, it is convenient to reduce the punch problems to the problem of linear

relationship where the general solution can be expressed in terms of the basic Plemelj function. Using

this method Muskhelishvili (1953) and England (1971) provided solutions for several types of punch

problems in their books. By combining Stroh's formalism (Stroh, 1958) and continuation theorem, Fan

and Hwu (1996) solved punch problems for an anisotropic elastic half-plane. Another powerful

mathematical tool for solving punch problems is based on the integral transforms that the problem is

formulated in terms of integral equations. The inverse of the integral equations can be obtained by the

use of some orthogonal polynomial expansions which was summarized by Gladwell and England (1977)
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and Gladwell (1978). The problem for a punch of arbitrary shape on an elastic half-plane was
considered by Fabrikant (1986a, b) who employed an integral equation based on the reciprocal distance
established by himself. Shibuya et al. (1989) used the generalized Abel transform method to study a
frictional punch problem of elliptical shape on an elastic half-plane. Willis (1966) investigated the
Hertzian contact problem of anisotropic bodies based on the method of Fourier transform.

The research noted above has considered only the isothermal case. When heat ¯ows between two
conducting solids, there will be some resistance to heat ¯ow across the interface and the contact pressure
will be in¯uenced by the temperature ®eld in the bodies. In certain cases, separation will occur at the
corners of the punch and results in incomplete indentation which makes the problem more complicated.
The literature on this subject includes works by Keer and Fu (1967), Fu (1970), Barber (1973, 1978),
Clements and Toy (1976), Gladwell and Barber (1983), Chao et al. (1999). More speci®cally, for the
problem with a frictionless rigid ¯at-ended punch, Comninou et al. (1981) found that, depending on the
magnitude and the direction of the total heat ¯ux, either perfect thermal contact throughout the punch
face or an imperfect contact region at the center with adjacent perfect contact regions occurs. In the
present paper, the thermoelastic problem of indentation of plane punches with various pro®les into an
elastic half-plane is solved by the method of analytical continuation. The frictional punch problems are
also studied in this paper. Examples of incomplete indentation by a ¯at-ended, wedge-ended or
parabolic-ended punch are solved explicitly and the condition to have complete indentation is discussed.

2. Heat conduction through a punch

The relationship of the heat ¯uxes and the temperature gradient in an isotropic plane medium can be
expressed as

hi � ÿkT, i �i � 1, 2� �1�
where k, T, h1, h2 stand for the thermal conductivity, temperature and heat ¯uxes in the x1, x2
directions, respectively. A subscript after a comma stands for a di�erentiation with respect to the
associated index. For the steady-state heat conduction problem, the temperature function satisfying the
Laplace's equation can be expressed in terms of a single potential function as

T�z� � Re�f0�z�� �2�
where Re denotes the real part of a complex function. Now we consider the case that a rigid punch of
width 2a is pressed into the half-plane x2 > 0 by a total force X+iY and a total heat ¯ux Q from the
punch to the half plane as indicated in Fig. 1. If there is perfect thermal contact throughout the contact
region ÿc2 < x1 < c1 pressed by the punch and the remaining region of the half plane is assumed to be
thermally insulated (Fig. 1), these conditions give

dT�x1, 0�
dx1

� 0, ÿ c2 < x1 < c1 �3�

and

h2�x1, 0� � 0, x1 > c1 or x1 < ÿc2: �4�
Eqs. (1)±(4) lead to the following Hilbert problem

F�0 �x1� � Fÿ0 �x1� � 0, ÿ c2 < x1 < c1 �5�
with
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F0�z� � f 00�z�: �6�
The superscript + (or ÿ) is used to denote the ®eld quantities approached from the medium x2 > 0 (or
x2< 0) and the overbar stands for the complex conjugate.

The solution to the Hilbert problem can be obtained as (Muskhelishvili, 1953)

F0�z� � b1z� b2��������������������������������z� c2��zÿ c1�
p , z 2 S�: �7�

The constant b1 in (7) vanishes due to the fact that the heat ¯ux tends to be zero at in®nity and the
remaining constant b2 can be determined from�c1

ÿc2
h2 dx1 � Q: �8�

It yields

b2 � ÿ Q

kp
: �9�

Therefore, the ®nal solution for F0(z ) becomes

F0�z� � ÿQ
kp

��������������������������������z� c2��zÿ c1�
p , z 2 S�: �10�

Clearly (10) may be integrated to give

f0�z� �
�
F0�z� dz � ÿ Q

ikp
sin ÿ1

2zÿ c1 � c2
c1 � c2

: �11�

When the property of symmetry with the contact length c1=c2=c is satis®ed, the solution given by (11)

Fig. 1. Geometry of the ¯at-ended punch.
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becomes

f0�z� �
�
F0�z� dz � ÿ Q

ikp
sin ÿ1

z

c
: �12�

3. Thermoelastic ®eld for punch problems

For the two-dimensional theory of thermoelasticity, the components of the displacement, resultant
force and the components of the stress can be represented in terms of two stress potentials f(z ), c(z )
and a temperature potential f0(z ) as (Bogdano�, 1954)

2m�u� in� � kf�z� ÿ zf 0�z� ÿ c�z� � 2mb
�
f0�z� dz

ÿ Y� iX � f�z� � zf 0�z� � c�z�

s11 � s22 � 2�f 0�z� � f 0�z��

s22 ÿ is12 � f 0�z� � f 0�z� � zf 00�z� � c 0�z� �13�
where the symbol m denotes the shear modulus and k=(3ÿ4n )/(1+n ), b=a for plane stress and
k=3ÿ4n, b=(1+n )a for plane strain with n being the Poisson's ratio and a the thermal expansion
coe�cient. When the surface of the half-plane is pressed by a rigid punch of width 2a, the stresses occur
at the contact region and the remaining region of the half-plane surface is unstressed. The unstressed
region may be regarded as the traction free boundary and from (13) we have

f�x1� � x1f
0�x1� � c�x1� � 0, j x1 j> a, x2 � 0: �14�

Using the continuation theorem, the boundary condition (14) allows us to extend the de®nition of f(z )
from S+ into Sÿ by putting

f�z� � f�z�, z 2 S�

f�z� � ÿzf 0� �z� ÿ c� �z�, z 2 Sÿ: �15�
Hence f(z ) is continued analytically from S+ into Sÿ, and holomorphic in the whole plane. (15) may
be rearranged to express c(z ) in terms of f(z ) as

c�z� � ÿf� �z� ÿ zf 0�z�, z 2 S�: �16�
Using (16), (13) can be modi®ed to the following expressions:

2m�u� in� � kf�z� � f� �z� � � �zÿ z�f 0�z� � 2mb
�
f0�z� dz

ÿ Y� iX � f�z� ÿ f� �z� ÿ � �zÿ z�f 0�z�
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s11 � s22 � 2�F�z� � F�z��

s22 ÿ is12 � F�z� ÿ F� �z� � �zÿ �z�F 0�z� �17�
where

F�z� � f 0�z�: �18�
Now, a complete solution to the half-plane problem has been reduced to the evaluation of a single
complex function f(z ) (or F(z )) which must satisfy the prescribed boundary conditions along the half
plane surface.

4. Frictionless punch problems

In this section we consider the case of a rigid frictionless punch indenting the half-plane S+ under the
action of a total force Y and a heat ¯ux Q. The boundary conditions for this problem can be expressed
as

n � f �x1� � constant

s12 � 0

�
on x2 � 0, j x1 jRa: �19�

From (17), the condition sxy=0 on x24 0+, vx1v R a implies

s12 � ÿ 1

2i
fF��x1� ÿ F��x1� ÿ Fÿ�x1� � Fÿ�x1�g � 0 �20�

(20) allows us to introduce a new holomorphic function de®ned as

y�z� �
�
F�z� � F� �z�, z 2 S�

F�z� � F� �z�, z 2 Sÿ
: �21�

Thus the function F(z )+F(z-) is holomorphic in the whole plane and by Liouville's theorem is equal to
zero, and for x24 0+, we have

F��x1� � Fÿ�x1� � 0: �22�
With the aid of (19) and (22), (17) for x24 0+ in di�erentiated form yields

F��x1� � Fÿ�x1� � 4m
1� k

�if 0�x1� ÿ bf�0 �x1��: �23�

The general function F(z ) satisfying (23) has the form

F�z� � X�z�
2pi

�a
ÿa

4m
1� k

�if 0�t� ÿ bf�0 �t��
�tÿ z�X ��t� dt� FX�z� �24�

where the Plemelj function X(z ) is de®ned as

X�z� � �z2 ÿ a2�ÿ1=2:
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The constant F in (24) can be determined from the condition

ÿY �
�a
ÿa

s22 dt: �25�

Substituting (24) into (17) and using (25), we obtain

F � ÿ iY

2p
: �26�

With this result, F(z ) in (24) becomes

F�z� � X�z�
2pi

�a
ÿa

4m
1� k

�if 0�t� ÿ bf�0 �t��
�tÿ z�X ��t� dt�

�
ÿ iY

2p

�
X�z�: �27�

The normal stress under the punch can be obtained from (17) as

s22 � 1

pi
X ��x1�

�a
ÿa

4m
1� k

�if 0�t� ÿ bf�0 �t��
�tÿ z�X ��t� dtÿ iY

p
X ��x1�: �28�

The problem is explicitly solved. Now we consider that two distinct situations can occur: perfect contact
throughout the punch face, and separation at the punch corners, with three di�erent pro®les of the
punch.

4.1. Flat-ended punch

As our ®rst example the punch of width 2a is ¯at-ended then f '(x1)=0 and from (12), the normal
stress under the punch in (28) becomes

s22 � 1����������������
a2 ÿ x2

1

q "
ÿ Y

p
ÿ 4mbQ

p2k�1� k�
�a
ÿa

��������������
a2 ÿ t2
p

tÿ x1
sin ÿ1

t

a
dt

#
: �29�

The integral in (29) cannot be directly evaluated in closed form. However, it is an even function of x1
varying monotonically from x1=0 to x1=a, the extremal values being�a

ÿa

��������������
a2 ÿ t2
p

t
sin ÿ1

t

a
dt � 2a�2Gÿ 1� �30�

and �a
ÿa

��������������
a2 ÿ t2
p

tÿ a
sin ÿ1

t

a
dt � ÿ2a �31�

where G = 0.915965 . . . is Catalan's constant (Gradshteyn and Ryzhik, 1965). (29) will de®ne a
compressive stress throughout vx1v< a if and only if

ÿ1:89 < l� < 1:57

where
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l� � 4mbQa

k�1� k�Y : �32�

For l�> 1.57, separation begins to occur at the punch corners and leaves a region of perfect contact
vx1v < c< a. Note that the normal traction must be a negative value throughout the contact region and
the related contact length 2c can be determined from the continuity condition at the transition such that
the function, (29), must be bounded at x1=2c. The ®nal result for the contact length is found to be

c

a
� p

2l�
: �33�

For separation, the normal stress under the punch is

s22 � 1���������������
c2 ÿ x2

1

q "
ÿ Y

p
ÿ 4mbQ

p2k�1� k�
�c
ÿc

��������������
c2 ÿ t2
p

tÿ x1
sin ÿ1

t

c
dt

#
: �34�

Fig. 2 shows the normal stress distribution for ÿ1.89 < l�< 1.57 where perfect contact is maintained
throughout the punch face and there is a square root singularity at the edge of the punch except for the
transitional case l�=1.57. For l� > 1.57, separation occurs at the corners of the punch, leaving a
contact width 2c which varies inversely with l� as indicated in (33). Typical contact pressure
distributions for l� > 1.57 are shown in Fig. 3. For l� < ÿ1.89, an imperfect contact region at the
center with adjacent perfect contact regions occurs (Comninou et al., 1981). We do not further discuss
this case throughout this study.

Fig. 2. Contact pressure distribution for perfect contact of smooth ¯at punch.
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4.2. Wedge-ended punch

As a second example we consider the motion to the right of the wedge-shaped punch shown in Fig. 4
where the end section of the punch is f '(x1)=e and we take the origin so that the contact region is ÿa<
x1< a. The integral term in (28) may be evaluated to ®nd the stress distribution under the punch being

Fig. 3. Contact pressure distribution for separation of smooth ¯at punch.

Fig. 4. Geometry of the wedge-ended punch.
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s22 � 1����������������
a2 ÿ x2

1

q "
ÿ Y

p
ÿ 4mex1

1� k
ÿ 4mbQ

p2k�1� k�
�a
ÿa

��������������
a2 ÿ t2
p

tÿ x1
sin ÿ1

t

a
dt

#
: �35�

In view of (35), the range of l� de®ned as (32), which is dependent of the material properties m and k,
and the slope of the end section of the punch e, for compressive contact stress throughout the contact
region can not be obtained explicitly. If the half-plane is made of aluminum with m=26.1 GPa, n=0.345
and the slope is taken to be e=0.1, the normal stress distribution for ÿ1.824 < l� < 0.823, which
ensures perfect contact throughout the punch face, is displayed in Fig. 5. For l� > 0.823, separation

Fig. 5. Contact pressure distribution for perfect contact of smooth wedge punch.

Fig. 6. Contact pressure distribution for separation of smooth wedge punch.
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begins to occur at the left corner of the punch where the length of the contact region can be determined
from the condition that the contact stress must be bounded at x1=ÿc2. Applying (35) and using the
extremal values in (30) and (31), we obtain the following explicit relation

c2 �
Y

p
ÿ l�Y

p2
4me
1� k

� l�Y
ap2

: �36�

By setting l�=0, (36) reduces to the result of the corresponding isothermal problem given by England
(1971). For separation, the normal stress under the punch is

s22� 1������������������������������������aÿ x1��x1 � c2�
p "

ÿY

p
ÿ 4mex1

1� k
ÿ 4mbQ

p2k�1� k�
�a
ÿc2

�����������������������������aÿ t��t� c2�
p

tÿ x1
sin ÿ1

2tÿ a� c2
a� c2

dt

#
: �37�

Numerical results of the stress distribution for l� > 0.823 are depicted in Fig. 6. If we consider the
motion to the left of the punch, the contact length c1, when separation occurs, can be also determined
from (35). The result is

c1 �
ÿY
p
� l�Y

p2
4me
1� k

ÿ l�Y
ap2

: �38�

where e is a negative number.

Fig. 7. Geometry of the parabolic-ended punch.
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4.3. Parabolic-ended punch

As our third example we consider indentation by a parabolic punch having an end-face f '(x1)=ÿx1/R
(see Fig. 7). The integral term in (28) may be evaluated to ®nd the stress distribution under the punch
being

s22 � 1����������������
a2 ÿ x2

1

q "
ÿ Y

p
� 2m�2x2

1 ÿ a2�
R�1� k� ÿ

4mbQ
p2k�1� k�

�a
ÿa

��������������
a2 ÿ t2
p

tÿ x1
sin ÿ1

t

a
dt

#
: �39�

To have a complete indentation, the contact stress in (39) must be a negative value. By the use of the
extremal values in (30) and (31), (39) de®nes a compressive stress throughout vx1v< a if and only if

�1� k�Y
2ma2p

�
ÿ 1ÿ l�

2�2Gÿ 1�
p

�
<

1

R
<
�1� k�Y
2ma2p

�
1ÿ l�

2

p

�
: �40�

It is seen that the range of l� de®ned as (32) is dependent of the material properties and a radius of
curvature. For the given material properties m=26.1 GPa, n=0.345 and a radius of curvature is taken
to be R/a = 100, the range of l� is found to be ÿ1.933 < l�< 1.533 for which a compressive contact
stress throughout the punch face is preserved. The normal stress under the punch carried out for
di�erent values of l� is displayed in Fig. 8. For l�> 1.533, separation begins to occur at the corners of
the punch, leaving a region of perfect contact vx1v < c < a, where the contact length c may be
determined from the condition that the contact stress (39) must be bounded at x1=2c. The result is

Fig. 8. Contact pressure distribution for perfect contact of smooth parabolic punch.
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c �
ÿ2l

�Y
ap2
�

����������������������������������������������
2l�Y
ap2

�2

� 8mY
R�1� k�p

s
4m

R�1� k�
: �41�

For the special case of l�=0, (41) agrees with the one of the corresponding isothermal problem
provided by England (1971).

For separation, the normal stress under the punch is

s22 � 1���������������
c2 ÿ x2

1

q "
ÿ Y

p
� 2m�2x2

1 ÿ c2�
R�1� k� ÿ

4mbQ
p2k�1� k�

�c
ÿc

��������������
c2 ÿ t2
p

tÿ x1
sin ÿ1

t

c
dt

#
: �42�

Numerical results of the normal stress distribution, when separation occurs, are shown in Fig. 9.

5. Frictional punch problems

In this section we consider the case that friction exists between a rigid punch and the surface of a
half-plane. The boundary conditions for this kind of problem may be expressed as

n � f �x1� � constant

s12 � s22l

�
on x2 � 0, j x1 jRa �43�

where f(x1) is a given function for the pro®le of the punch, and l is the friction coe�cient. Note that the
second equation of (43) only holds provided s22 is negative, which must be checked when the solution is
obtained.

By using (17), the boundary condition s12=s22l on the contact region implies

Fig. 9. Contact pressure distribution for separation of smooth parabolic punch.
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iff 0 ��x1� ÿ f 0 ��x1� ÿ f 0 ÿ�x1� � f 0 ÿ�x1�g � lff 0 ��x1� � f 0 ��x1� ÿ f 0 ÿ�x1� ÿ f 0 ÿ�x1�g: �44�
Based on the method of analytical continuation, (44) permits us to introduce a new holomorphic
function de®ned as

y�z� �

8>><>>:
f 0�z� � i� l

iÿ l
f 0� �z�, z 2 S�

f 0�z� � i� l
iÿ l

f 0� �z�, z 2 Sÿ
: �45�

Now the function

f 0�z� � i� l
iÿ l

f 0� �z�

is holomorphic in the whole plane including the point at in®nity, by Liouville's theorem we have

f 0�z� � i� l
iÿ l

f 0� �z� � 0

and for x24 0+, resulting in

f 0 ��x1� � i� l
iÿ l

f 0 ÿ�x1� � 0: �46�

With the aid of (43) and (46), (17) for x24 0+ in di�erentiated form gives

F��x1� �mFÿ�x1� � n��x1� �47�
where

m � k�iÿ l� � �i� l�
k�i� l� � �iÿ l� � e2pia1

n��x1� � �ÿ1� il� cos pa1
�k� 1�eÿpia1 �4mbf�0 �x1� ÿ 4mif 0�x1��

and

tan pa1 � l
kÿ 1

k� 1
, 0Ra1 <

1

2
:

The general solution to the Hilbert problem, (47), can be obtained as

F�z� � X�z�
2pi

�a
ÿa

n��t�
�tÿ z�X ��t� dt� FX�z� �48�

where

X�z� � �z� a�ÿg�zÿ a�gÿ1, g � 1

2
� a1

The constant F appearing in (48) can be found from the condition
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ÿY �
�a
ÿa

s22 dt �49�

and has the form

F � ÿY�i� l�
2p

: �50�

By substituting (50) into (48), the ®nal result for F(z ) becomes

F�z� � 2m
pi
�ÿ1� il� cos pa1
�k� 1�eÿpia1 X�z�

�a
ÿa

�bf�0 �t� ÿ if 0�t��
�tÿ z�X ��t� dt�

�
ÿ �i� l�Y

2p

�
X�z�: �51�

Substitution of (51) into (17) results in

s22 ÿ is12 � F��x1� ÿ Fÿ�x1� � 2m
pi
�ÿ1� il�
�1� k�eÿipa1 �1� eÿi2pa1�X ��x1�

�a
ÿa

�bf0�t� ÿ if 0�t��
�tÿ x1�X ��t�

dtÿ �i� l�Y
2p

�1� eÿi2pa1�X ��x1�:
�52�

The problem now is solved in principle. For the purpose of illustration, we examine the following
examples with three di�erent pro®les of the punch.

5.1. Flat-ended punch

We ®rst consider the case of a ¯at-ended punch which is pressed to the right and has a contact region
vx1v R a. By using (12) and knowing that f '(x1)=0, (52) de®nes the normal stress under the punch as

Fig. 10. Contact pressure distribution for perfect contact of frictional ¯at punch.
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s22� 1

�x1 � a�12�a1 �aÿ x1�
1
2ÿa1

(
ÿY
p

cos pa1ÿ 4mbQ cos 2 pa1
p2k�1� k�

�a
ÿa

�t� a�12�a1�aÿ t�12ÿa1
tÿ x1

sin ÿ1
t

a
dt

)
: �53�

Obviously, by letting a1=0, (53) is simpli®ed to (29) for the punch problem without friction. In view of
(53), the range of l� as de®ned by (32) for which a compressive contact stress throughout the contact
region must be preserved can be determined numerically once the material properties of the half-plane
and the slope of the punch pro®le are selected. It is seen that, to have a complete indentation, the range
ÿ1.889 < l� < 1.480 is obtained as the material constants m=26.1 GPa, n=0.345 are used and the
friction coe�cient is taken to be l=0.2. Fig. 10 illustrates the normal stress distribution for di�erent
numbers of l� where a negative stress prevails within the contact region. As l� > 1.480, separation
begins to occur at the right corner of the punch and the normal stress under the punch becomes

s22 � 1

�x1 � a� 12�a1�c1 ÿ x1�
1
2ÿa1

(
ÿ Y

p
cos pa1

ÿ 4mbQ cos 2 pa1
p2k�1� k�

�c1
ÿa

�t� a�12�a1 �c1 ÿ t�12ÿa1
tÿ x1

sin ÿ1
2tÿ c1 � a

a� c1
dt

)
:

�54�

The length of the contact region c1 is determined from the condition that the normal stress must be
bounded at the point x1=c1. Typical contact stress distributions for di�erent lengths of the contact
region are shown in Fig. 11.

Fig. 11. Contact pressure distribution for separation of frictional ¯at punch.
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5.2. Wedge-ended punch

As a second example we consider a wedge-ended punch which is pressed to the right and has a

contact region vx1v R a. By using (12) and knowing that f '(x1)=e, the normal stress under the punch can

be obtained from (52) as

s22 � 1

�x1 � a� 12�a1�aÿ x1�
1
2ÿa1

(
ÿ Y

p
cos pa1

ÿ 4me�x1 � 2a1a� cos pa1
1� k

ÿ 4mbQ cos 2 pa1
p2k�1� k�

�a
ÿa

�t� a�12�a1 �aÿ t�12ÿa1
tÿ x1

sin ÿ1
t

a
dt

)
:

�55�

For a special case of a1=0, (55) is simpli®ed to (35) for the frictionless punch problem. With similar

reason as the previous approach, the range ÿ1.861 < l� < 0.895 is obtained to have a complete

indentation for the wedge-ended punch with the pro®le f '(x1)=e=0.1. Numerical results of contact

stress distributions are shown nondimensionally in Fig. 12. For l�> 0.895, separation occurs at the left

corner of the punch leaving a contact width a+c2 for which the normal stress under the contact region

becomes

Fig. 12. Contact pressure distribution for perfect contact of frictional wedge punch.
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s22 � 1

�x1 � c2�
1
2�a1 �aÿ x1�

1
2ÿa1

8><>:ÿ y

p
cos

pa1 ÿ
4me

�
x1 � �a� c2�

�
1

2
� a1

�
ÿ a

�
cos pa1

1� k

ÿ 4mbQ cos 2 pa1
p2k�1� k�

�a
ÿc2

�t� c2�
1
2�a1 �aÿ t�12ÿa1
tÿx1

sinÿÿ1 2tÿ a� c2
a� c2

dt

9>=>;:

�56�

The length c2 is determined from the condition that the stress (56) must be bounded at x1=ÿc2 where
the punch and the half-plane meet smoothly. This yields

Y

p
�

4me�a� c2�
�
ÿ 1

2
� a1

�
1� k

� l�
Y cos pa1

ap2

�a
ÿc2

�t� c2�
1
2�a1 �aÿ t�12ÿa1
t� c2

sin ÿ1
2tÿ a� c2

a� c2

dt � 0:

�57�

Numerical results of the normal stress distribution for di�erent values of the contact length c2 are
shown in Fig. 13.

Fig. 13. Contact pressure distribution for separation of frictional wedge punch.
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5.3. Parabolic-ended punch

The last example we consider indentation by a parabolic-ended punch which is pressed to the right
and has a contact region vx1v R a. By using the equation f '(x1)=ÿx1/R and the temperature function
(12), the normal stress under the punch can be obtained from (52) as

s22 � 1

�x1 � a� 12�a1�aÿ x1�
1
2ÿa1

(
ÿ Y

p
cos

pa1 � 4m cos pa1
R�1� k�

�
x2
1 � x1�2aa1� � 2a2

�
a21 ÿ

1

4

��

ÿ 4mbQ cos 2 pa1
p2k�1� k�

�a
ÿa

�t� a�12�a1�aÿ t�12ÿa1
tÿ x1

sinÿ1
t

a
dt

)
:

�58�

Similar to the previous approach, the range of the dimensionless parameter l� for complete contact is
found to be ÿ1.935 < l�< 1.443 if a radius of the parabolic-ended punch is assumed to be R/a= 100,
and the friction coe�cient is taken as l=0.2. While separation occurs, the normal stress can be
expressed as

s22 � 1

�x1 � c2�
1
2�a1 �c1 ÿ x1�

1
2ÿa1

8><>:ÿ Y

p
cos pa1

�4m cos pa1
R�1� k�

264
x2
1 � x1

�
a1�c1 � c1� � 1

2
�c2 ÿ c1�

�
�

�
a21 ÿ

1

4

�
2

�c1 � c2�2

375

ÿ 4mbQ cos 2 pa1
p2k�1� k�

�c1
ÿc2

�t� c2�
1
2�a1 �c1 ÿ t� 12ÿa1
tÿ x1

sin ÿ1
2tÿ c1 � c2

c1 � c2
dt

9>=>;:

�59�

The contact lengths c1 and c2 are determined from the following conditions:

ÿY
p
� 4m

R�1� k�

24
c21 � a1c1�c1 � c2� � c1

2
�c2 ÿ c1� �

�
a21 ÿ

1

4

�
2

�c1 � c2�2

35

ÿ l�
Y cos pa1

ap2

�c1
ÿc2

�t� c2�
1
2�a1 �c1 ÿ t�12ÿa1
tÿ c1

sin ÿ1
2tÿ c1 � c2

c1 � c2

dt � 0

�60�

and
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ÿY
p
� 4m

R�1� k�

24
c22 ÿ a1c2�c1 � c2� ÿ c2

2
�c2 ÿ c1� �

�
a21 ÿ

1
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�
2

�c1 � c2�2
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�t� c2�
1
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�61�

Fig. 14. Contact pressure distribution for perfect contact of frictional parabolic punch.

Fig. 15. Contact pressure distribution for separation of frictional parabolic punch.
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Typical contact stress distributions for di�erent values of l� are displayed in Fig. 14 and Fig. 15 for
complete indentation and incomplete indentation, respectively.

6. Concluding remarks

The thermoelastic problem of punch indentation into an elastic half-plane with or without friction is
considered in this paper. Based on complex variable theory and the method of analytical continuation,
the full ®eld solution of both the temperature and stress functions are obtained analytically. The
condition that either perfect contact throughout the punch face or separation occurred at the punch
corners is discussed explicitly, which is dependent on the magnitude of resultant force and total heat ¯ux
applied over the punch face. The relation of the contact length with the pertinent parameters is found in
closed form for frictionless punch problems. For frictional punch problems, both the contact length and
the normal stress under the punch must be determined numerically.
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